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Abstract. Multiconfigurational expansions of density
operators which may be used in numerical treatments
of the dynamics of closed and open quantum systems are
introduced. The expansions of the density operators may
be viewed as analogues of those used in the multiconfig-
uration time-dependent Hartree (MCTDH) method,
which is a well-established and highly efficient method
for propagating wavepackets in several dimensions.
There is no unique multiconfigurational representation
of a density operator and two sensible types of MCTDH-
like expansions are studied. Equations of motion for
these multiconfigurational expansions are presented by
adopting the Dirac—Frenkel/McLachlan variational
principle (or variants of thereof). Various properties of
these sets of equations of motion are derived for closed
and open system dynamics. The numerical and technical
aspects of this approach have been recently discussed by
us [(1999) J Chem Phys 111: 8759]. Here we discuss the
formal aspects of the approach in a more general context.
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1 Introduction

During the last two decades the numerical treatment of
the dynamics of molecular quantum systems in the time-
dependent picture has become a popular and successful
approach. For pure states in closed quantum systems
one has to solve the time-dependent Schrédinger equa-
tion. The standard method is to use a product basis set
or grid representation for the wavefunction and the
Hamiltonian and to solve the resulting equation of
motion for the expansion coefficients by an appropriate
integration scheme [1-3]. This method works well for
systems of low dimensionality, but is not feasible
for larger systems because the numerical effort grows
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exponentially with increasing number of degrees of
freedom. Further approximations are thus necessary if
one wants to investigate the dynamics of larger systems.

A convenient way is to restrict the shape of the
wavefunction by a suitable parameterisation or sophis-
ticated expansion rather than by straightforward basis
set expansion. A well-known approach motivated by
semiclassical ideas is to choose the Gaussian trial form
for the wavepacket [4]. If the potential is smooth and
large masses and high energies are involved this form is
well justified. Using Gaussian wavepackets allows sys-
tems with a large number of degrees of freedom to be
treated since only a few parameters are involved, but the
accuracy of the method is often insufficient. Further
approaches which restrict the shape of the wavefunction
are the time-dependent Hartree (TDH) [5, 6] and the
multiconfiguration TDH (MCTDH) methods [7-10]. In
the TDH method an n-dimensional wavefunction is
represented as the product of n one-dimensional time-
dependent wavefunctions. The method can be applied to
rather large systems but its drawback is the loss of cor-
relation among the various degrees of freedom. The
MCTDH method generalises the TDH method by ex-
pressing the wavefunction as a sum of Hartree products.
The accuracy of the MCTDH method depends on the
number of Hartree products included and the (numeri-
cally exact) standard method as well as the TDH method
are included as limiting cases. The MCTDH method
enables the treatment of systems with a comparatively
large number of degrees of freedom, typically 8—12. The
most impressive examples to date are recent calculations
in our group for the pyrazine molecule, for which the
motion of all 24 vibrational modes could be treated ac-
curately [11, 12]. Hence, the wavepacket evolves on the
S; and the S, potential-energy surfaces, which are vib-
ronically coupled through a conical intersection, making
the dynamics nonseparable and complicated.

Given a parameterised form of the wavefunction, a
set of differential equations, known as equations of
motion, is derived in the previously mentioned methods
by employing the variational principle of Dirac [5] and
Frenkel [13]. This variational principle has been refor-
mulated by McLachlan using a stricter argumentation



[6]. It ensures that the resulting approximate wavefunc-
tion is optimal in a sense we will specify in Sect. 2.

Besides wavefunction propagation, the numerical
propagation of density operators has gained increasing
interest in recent years [14-25]. In contrast to wave-
functions, density operators are used to describe, for
example, closed systems at finite temperature for which
the corresponding state is a statistical mixture. The most
important advantage of the density operator formalism,
however, is the possibility to include the effects of an
environment on the system dynamics. In this way one
can describe open quantum systems and their non-
equilibrium dynamics [26-31].

The numerical treatment of density operators is more
difficult than the treatment of wavefunctions since the
number of dynamical variables is doubled and hence the
effort for time propagation is squared [16]. Standard
methods, formulated by analogy with the wavefunction
case, can normally be applied to systems with no more
than two or three degrees of freedom. The use of pa-
rameterised density operators is therefore a promising
approach for treating larger systems. As already pro-
posed by McLachlan [6] and discussed in more detail by
Heller [4] the Dirac—Frenkel/McLachlan variational
principle (DFMVP) can also be formulated for density
operators. However, both authors showed for a Hartree
type of density operator and closed-system dynamics
that the mean value of the energy might not be con-
served. While McLachlan therefore rejected the appli-
cation of the variational principle to Hartree-type
density operators, Heller suggested the use of a La-
grangian constraint to remove this unphysical feature.

The aim of this article is to analytically investigate
multiconfigurational expansions of density operators and
their equations of motion which are based on the
DFMVP. Our interest in these equations stems from
practical applications of the MCTDH method to
the propagation of density operators [25]; however, the
results are rather general. In Sect. 2 we briefly review the
DFMYVP. In Sect. 3 multiconfigurational expansions of
the density operator are introduced to which the DFM VP
is applied. These expansions are similar to those used in
the MCTDH method for wavepackets [7-12]. In the fol-
lowing section we focus on two special types of parame-
terised density operators. The first type is an expansion in
terms of products of one-dimensional Hermitian density
operators and the second type is an expansion in terms
of ket-bra products of wavefunctions. Both types of
MCTDH-like expansions were recently proposed by us
and the second one was tested numerically [25]. Here our
interest is to investigate more formally the expansions
and to provide proofs for their properties. This also sheds
light on the problems reported by McLachlan [6] and
Heller [4]. In Sects. 5 and 6 we discuss the features of these
expansions for closed and open systems. Finally we
summarise and discuss our results in Sect. 7.

2 The DFMVP

The variational method due to Dirac [5] and Frenkel [13]
has been known for a long time. It was proposed in 1930
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for the approximate solution of the time-dependent
Schrodinger equation

¥ =—HY , (1)

where the wavefunction, W, is restricted to take some
specific form determined by a set of parameters.
Equations of motion for these parameters are derived
from the variational principle

(89| — HY) =0 , (2)

where 0¥ denotes possible variations of W with respect
to the parameters. Frenkel’s original derivation of
Eq. (2) was criticised by McLachlan in 1964 [6] because
of difficulties in the argumentation. He suggested in his
work to alternatively minimise |{'¥ — H'¥|| and derived
from this requirement an equation rather similar to

Eq. (2):
Re (0¥|i¥ — H¥) =0 . (3)

Equations (2) and (3) were investigated by several
authors [4, 6, 32-34]. It was shown that these equations
are equivalent if for each variation, 0¥, its complex
conjugate is also a possible variation. The most detailed
discussion of this point is given in Ref. [34].

In the following we assume that the wavefunction ¥
is parameterised by n complex parameters a, 1 < k < n.
For the sake of convenience we adopt the vector nota-
tion a = (aj,as,...,a,)". We assume further that the
wavefunctions ¥(a) form a smooth manifold, M, such
that continuous derivatives, 0¥ (a)/0ay, exist. The de-
rivative of ¥ (a) with respect to time is then given by

) = 3 F@, (4)

=i Gak

To describe possible solutions, W(a), it is convenient to
introduce tangent spaces [34].

Definition: The tangent space of W(a) on M is given by

TM(a) = {5?‘5\1/ - z":ag(a) day, da € 65} . 6)

= C%

The optimal solution to the Schrédinger equation
Eq. (1) is given by the condition
|\P(a) + iH¥(a)|| = min , (6)

which is equivalent to finding a ¥ € TM(a) closest to
—iHY¥(a). This, in turn, is equivalent to ¥ (a) being the
projection of —iH'¥(a) onto TM(a).

Theorem 1: (DFMVP) The condition represented by Eq.
(6) is equivalent to

(0¥|¥(a) + iH¥(a)) =0, 0¥ e TM(a) . (7)

Remarks:

1. The parameters a; may be generalised from numbers
to functions. In this case the partial derivatives above
are to be replaced by the Fréchet derivative [35].
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2. If the parameters a;, 1 < k < n, are real one obtains
instead of Eq. (7)

Re (0¥|¥(a) +iHW¥(a)) =0, oY €TM(a) , (8)
which is the variational principle of McLachlan
derived in a different way. This illustrates that the
parameterisation determines whether Eq. (7) or Eq.
(8) is to be applied, while both variational principles
are based on the same optimisation Eq. (6). We will
therefore not distinguish between them and refer to
the literature for further discussion [33, 34].

3. If the parameterisation is not injective, i.e. if a # b
with W(a) = W¥(b), then one must introduce suitable
constraints in order to remove this ambiguity and to
arrive at unique equations of motion.

The DFMVP Eq. (7) leads to a set of differential
equations of first order for the coefficients, which are
usually called equations of motion. We assume that the
equations of motion can be solved uniquely for a given
time interval (¢, #,) and initial condition a(#). We
remark that in practical applications one sometimes has
to employ a regularisation procedure to achieve this goal.

3 Application of the variational principle
to density operators

In the following we apply the DFMVP to density
operators. The evolution in time of a quantum system
within the density operator formalism is given by a first-
order differential equation

p:g(p) ) (9)

where . is a linear (super) operator [26, 28]. For closed
systems the latter reads (Liouville-von Neumann equa-
tion) [26]

Z(p) = —ilH,p] , (10)

where H is the Hamiltonian of the system. This is the
counterpart of the Schrodinger equation Eq. (1) for
wavefunctions and leads to a unitary evolution of p.
For open systems various approaches for & exist.
A prominent one is that of Lindblad and Gorini et al.
[29-31]
1 1 .
Z(p) =—i[H,p]+2<VmVjT ~3ViVip=3pV; Vj> ,(11)
j

which leads to a completely positive semigroup evolu-
tion of p. We will discuss the dynamics of open systems
in more detail in Sect. 6.

From a formal viewpoint we start with a (separable)
Hilbert space, #, of wavefunctions. Using the nomen-
clature of Ref. [36] the density operator p is a positive
trace-class operator with Tr{p} =1 acting on #. We
assume that p is parameterised and that an optimal so-
lution, p, to Eq. (9) is sought. For the sake of simplicity
we omit in the following the individual parameter con-
figuration which determines p and p. Unfortunately the
set of trace-class operators, %, is a Banach space but
not a Hilbert space and the DFM VP cannot be applied.
However, .%; is dense in the Hilbert space %, of

Hilbert—Schmidt operators, which is equipped with
the scalar product

(4]B) =Tr{A'B}, A,Be %> . (12)

This scalar product can be used to formulate the
DFMYVP for density operators:

(0plp — L (p)) = Tr{0p'(p — L(p))} =0 . (13)

As mentioned in Sect. 1 the variational principle Eq. (13)
was introduced by McLachlan for closed systems [6].
Furthermore, Eq. (13) is equivalent to minimising
lop — Z(p)|| in the tangent space which is a closed
subspace of ¥, (||4]| = /Tr{4t4} for 4 € F).

As mentioned previously the density operator p has
some further properties: It is positive and self-adjoint.
The question then arises under which conditions the
latter property is conserved by the DFMVP. We have
seen that the DFMVP Eq. (13) is equivalent to mini-
mising [|p — £ (p)|. Since p=p! and Z(p) = Z(p)"
one may write Eq. (13) as

Tr{sp'[p — L(p)]} = Tr{op[p' — ZL(p)]} =0 . (14)
This is equivalent to
Ip" = Z(p)| =min, pleTM'={x'lxeTM},  (I5)

where TM' is the adjoint tangent space. We now can
formulate the condition under which p remains Hermi-
tian.

Theorem 2: Let p denote the solution of the DFMVP.
Then p = pi if p € TMT.

Proof: Let p € TM', which is equivalent to pf € TM.
Then

Tr{p[p — Z(p)]} =0 . (16)
We now obtain

lp = p'lI* =Tr{(p" = p)(p — )}
=Te{p(p' = p)} + Te{p(p" - p)}"
= 2Re[Tr{p(p" — p)}]
= 2Re[Tr{p(p' — Z(p))}
+Tr{p(ZL(p) — p)}]
=0, (17)

since p € TM (always!) and p € TM' by assumption.
The opposite direction is trivial since pf € TM'.

Theorem 2 shows, on the one hand, that p = p' can
always be achieved by an appropriate parameterisation
of p yielding a large enough tangent space. On the other
hand, for a given parameterisation one may prove the
conservation of hermiticity of p by showing that p is an
element of TM'.

4 MCTDH-like expansions of density operators
and their equations of motion

In this section we apply the DFMVP to particular types
of parameterised density operators which play an



important role in practical applications [21, 25]. We start
with an MCTDH-like expansion

N
p =" B2 (18)
7 =1

where the B () are expansion coefficients and the Q4 (¢)
are trace-class operators. For the latter we distinguish
two types. The first type is a product of f trace-class
operators acting on Hilbert spaces, #,, 1 <k < f,

Qr(t)=cl(t)-...- o&’?(t), T =(t1,...,t7) , (19
and the Hilbert space, #, on which the Q4 (¢) act is given
by # = # & --® Hy. Here f denotes the number of
degrees of freedom. Taking n, so-called single-particle
density operators (SPDOs) og’:‘) for each degree of
freedom, «, the total number of expansion terms in Eq.
(18) becomes N =n; - ...-ny. The second type of Q(¢)
we consider is a ket-bra product of wavefunctions

Q7 (1) =0, (O))(P(t), 7T =(, L) . (20)
The wavefunctions @®; are later taken as Hartree
products

0 =¢) ool (21)
with so-called single-particle functions (SPFs) (p](f),
1 < x < f. Taking n, SPFs for the xth degree of freedom
yields N = nj -...-n; configurations. However, for the
time being we do not need to specify the wavefunctions
®; and may consider them as general parameterised
multidimensional wavefunctions. We should remark
that both types of expansions of p (i.e. in SPDOs or
SPFs) were recently discussed by us [25] when general-
ising the MCTDH algorithm from wavepacket propa-
gation to the time evolution of density operators.

To obtain a self-adjoint representation of p we
assume for the first type of expansion

By oy =Bl s ol = gt (22)
and for the second type
BjLr=Bj, . (23)

We shall denote the first approach to represent p [i.e.
Egs. (18), (19), (22)] as density operator of type 1 and the
second approach [i.e. Egs. (18), (20), (23)] as density
operator of type 2.

The tangent space for type 1 density operators is
given by

S
op=> 0BsQr +Y > MMl
T

k=1 v=1

(24)

where we have introduced so-called single-hole density
operators

n =>"B,.Qs, , (25)
Tk

with

Qs = ol gl Gl g,

(fk,v) = (’El e T 1 VTt 1 ...’L’f) . (26)
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We assume that the variations 6B, and oo\ are
arbitrary. The parameterisation [Eqgs. (18),(19)] is not
injective as different coefficients and SPDOs ‘7,(¢K) may
result in the same density operator, p. To ensure a
unique representation we further introduce the con-
straints

<O'LK> O'E,K)> = Oy (27)
(o)) =0 29

More general constraints are discussed in the Appendix
and in Ref. [25]. Note that the constraints lift the
ambiguity in the representation of p but do not restrict
the variational space. There thus appear no Lagrange
parameters. The equations of motion for the coefficients
Bz and the SPDOs resulting from the DFMVP are
derived in Ref. [25]. They are given by

Br = (Q7|Lp) (29)
50 (1 _ g)(h')) (@w)"< PG (30)
We have used here the vector notation

o) = (J(IK),...,JSI’E))T (31)

2") is a projector on the (Hilbert-Schmidt) space
spanned by the SPDOs for the xth degree of freedom

Nk

PR — Z 65’<)><05K) , (32)
v=1

and (#)" are mean fields defined as

(2)8) = (| 2m) . (33)

An important role is played by the coefficients of the
squared reduced densities, Tr{p'p},.

ge) — <Hff) H<;c>> ’

v v

(34)

where Tr{-}, denotes the partial trace over all but the
xth degree of freedom. If the corresponding matrices,
2™ are regular the equations of motion of the SPDOs
can be solved uniquely, otherwise 2) must be regular-
ised [7, 8, 10]. The regularisation does not change (or
only marginally changes) p as it changes the time
evolution of only those SPDOs which are unoccupied
(or only weakly occupied). The equations of motion
[Egs. (29), (30)] form a system of coupled nonlinear
ordinary differential equations of first order. Moreover,
the MCTDH density operator converges towards the
(numerically) exact density operator with increasing
numbers of SPDOs.

Proposition 1: The DFMVP conserves the hermiticity of
p expanded according to type 1, i.e.

p=p', Br=8B, VT , (35)
and if 2 are regular
60 = 6091 (36)
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Proof: Since for each variation B, and 5t the
T
complex conjugate (6B7)" and the adjoint <5a$'€)) are

also possible variations, and since Qs and H are
self-adjoint we obtain TM = TM'. From theorem 2 we
conclude therefore that p = pf. p is given by

p—ZBJQJJrZZH (37)

k=1 v=

and usmg the constraints [Egs. (27), (28)], Q7 = QT and
p = pl, we obtain

= (Q7|p) = Tr{Q7p} = Tr{Q7p} =B . (38)

To prove the last assertion we define the self-adjoint
operator

pi=p— ZB :ZZH . (39)

Using again the constraints [Eqgs. (27), (28)] we define
further
a,EtK) — Tr{nflc)p}K — Z<H(K) HE,K)>O"E,K>
=YWl (40)
v

Adopting a vector notation one obtains

5 = (9) e )

Since aff) = aL")T by construction and since 2 are real

this proves ¢ = 6(97 for all , x.

We now investigate type 2 density operators, which
have been introduced previously. The tangent space is
given by

Sp= Z5BJ,L|(DJ> (@ + By L(|0Ds) (D] +|Ds) (6D ]) .(42)
JL

We assume that for each variation 6B, and 6@, the
complex conjugate is also a possible variation. As for
type 1, we introduce constraints to ensure a unique
representation of p:

(@;|®L) = 6,1 (43)
(@|dL) =0 . (44)
More general constraints are discussed in the Appendix
and in Ref. [25].

Proposition 2: For type 2 density operators the DFMVP
yields

p=p', BjL=B;, VJL. (45)

Proof- We first investigate the possible variations dp
[c.f. Eq. (42)]. Since each term
By (|0®s)(Dr] + |D) (6D, |)

+ By (|0DL) (D] + D) (0D, () (46)

is self-adjoint and the variations 0B, are arbitrary,
we see that dp' € TM for each dp € TM and therefore
TM = TM'. Using theorem 2 one obtains p = pi. p is
given by

p—ZBJLvDJ (@u] + ) By (1) (@r] + ) () -

JL
(47)
To prove the second assertion we define
pi=p—> Br(|0)(®| + @) (Ds])
JL
= Byi|®) (@] . (48)
JL

Since each term
By 1 (|0,)(®] + |@,) (D))
+ By (|9L) (D] + | @) (D)) (49)

is self-adjoint we obtain pf = p. Using the constraint
Eq (43) yields By, = (®,|p|®;) and thus

B = (®y]p|®L)" = (Os|p|Ds) = BL - (50)

Finally we turn to the MCTDH expansion of p in SPFs
[c.f. Eq. (21)] introduced previously. The equations of
motion of the coefficients B, and the SPFs are derived
in Ref. [25]. They read

By = (0|2 (p)|®yL) (51)

-1
o™ = (1 - (“))Tr{f (p)p}x(fﬁ(z) <")) o™ . (52)
We have introduced here the vector notation
T
o) = (wﬁk), o @2’?) : (53)
and 22 are given by

930 = (o [Te{ 7}, ot -

where the superscript® indicates that the density
operator, p, enters quadratically. Tr{-}, denotes the
partial trace over all but the xth degree of freedom;
however, the trace is taken only over the finite dimen-
sional space spanned by {®,}. Finally

-l o
J

is defined as the projector on the space spanned by the
single-particle functions for the xth degree of freedom.
We should remark that the above equations of motion
again form a system of coupled nonlinear ordinary
differential equations of first order.

(55)

5 Closed systems

In this section we investigate properties of the DFMVP
applied to density operators which represent states of
closed systems. The corresponding equation of motion
within the density operator formalism is the Liouville—



von Neumann equation [Egs. (9), (10)]. This equation
has the same formal structure as the Schrodinger
equation Eq. (1) since with respect to the Hilbert—
Schmidt scalar product Eq. (12) # = [H, -] is a self-
adjoint linear operator acting on the Hilbert space of
Hilbert-Schmidt operators %, [37]. We can therefore
transfer the following theorem known for the DFMVP
applied to wavefunctions [10] to the present case.

Theorem 3: The equations of motion derived from the
DFMVP conserve

[pll = 1/ Tr{p?}

if pe TM.

Theorem 3 is valid for all types of density operators
as it follows directly from the DFMVP Eq. (13). How-
ever, from a physical point of view the question of
whether Tr{p} and Tr{pH} are conserved is more
interesting than the property stated by theorem 3.
Unfortunately these quantities are usually difficult to
investigate for applications of the DFMVP to density
operators since they do not occur explicitly in the for-
malism. We therefore restrict the following discussion to
type 2 density operators for which interesting results can
be derived.

(56)

5.1 Results for type 2 density operators

The DFMVP for closed systems reads

Te{op'(ip — [H,p)} =0, (57)

where Jdp is given by Eq. (42). A straightforward
calculation of the coefficients yields

iByo =Y (®y|H|DPr)Burs — Byar(Qu|H|DL) .
M

(58)

This equation is also given by Eq. (51) in a more
general form and does not depend on the specific
parameterisation of the wavefunctions ®;. Defining
H; = (D,|H|®;) and adopting a matrix notation one
can rewrite Eq. (58) as

B =—i[H,B] . (59)

Note that H is time-dependent if the wavefunctions @,
are time-dependent.

Proposition 3: If the wavefunctions ®; are time-inde-
pendent for all J then Tr{p"H}, n=1,2,3,..., is
conserved.

Proof:
Tr{p"H} = Tr{B"H}

i n _ - k—1 n—k
5 Tr{p"H} = I;Tr{B [H,B]B" “H}

=—i

Tr{kalHankJrlH}

n

k=1
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n
+iy Tr{B‘HB" “H}
k=1

= —iTr{HB"H} + iTr{B"H*}
=0 . (61)

The case of time-independent wavefunctions ®; yields a
usual basis-set expansion of p within the fixed basis
{®,}. For this situation proposition 3 shows in partic-
ular that the mean energy, (H) = Tr{pH}, is conserved.
In the following, however, we investigate the more
interesting case of a time-dependent basis set {®;}.
Since the matrix B is self-adjoint there exists an
eigensystem {py;, Ay} where py are the eigenvalues
corresponding to the eigenvectors A,, and

pM = ZA;MBJ,LAL,M (62)
JL
Byi=> Armpudi, - (63)
M
We can rewrite p in terms of the eigensystem as
p="Y Byil®)(®]
JL
= Z Ay mpyAy | Ps) (DL
J.LM
= ZPM|‘PM><‘PM| ) (64)
M
where
(65)

War) =Y Asul®)) .

This is an equivalent parameterisation of type 2 density
operators.

Proposition 4: If the equations of motion can be solved
uniquely for a given time interval #; < ¢t < f, then for the
eigensystem {pys, Ay} the DFMVP yields

pu=0, Ay=—-iHAy VM, (66)
and for the eigenfunctions
(PL|Wy +iHYy) =0 YL,M . (67)

Proof: To derive an expression for B(¢#) we introduce
£(t) = —i[H(?), -] and the propagator

P(s,t)) =

l+kzo_cl/t]...:/klg(r])...g(rk)drl...drk. (68)

nhon

In this way we obtain B(¢) = P(¢,,)B(¢#;) for ; <t < 1.

By introducing the time-ordering operator,

T(L(t1)¥(12)... L (k) = L(1:)) L (z4,) - .. L(75,)s
Tl'] ZTiZZ"‘ZTik ) (69)

the propagator can be rewritten in a more convenient
form
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P(t,t;) = Texp /g(r)dr . (70)

This leads to
B(t) = P(t,11)B(1)

t

= Texp —i/H(r)dr

« B()T exp i/H(‘E)d‘C , (71)

from which Eq. (66) immediately follows. Using Eq. (44)
we obtain further

(AL|Ay + HAy) = (PL| Wy + iHP),)
=0 VLM . (72)

Proposition 4 has some interesting consequences.
Corollary 1: A pure state remains pure.
Corollary 2: Tr{p"}, n=1,2,3,..., is conserved.

Proof:
d d d
—T n = —T Bn = — /! = .

because of the constraints [Egs. (43), (44)].
For the parameterisation Eq. (64) of p we conclude from
proposition 4 that

p= ZPM(|lPM><lPM| + W) (Pul) - (74)

The variations dp are now given by

op = ZPM(|5‘PM><‘PM| + [War) (0¥ ul) (75)

which will be inserted in the DFMVP Eq. (57) in the
following. Since

ip—[H,p) = pu (¥ — H¥u1) (¥ur|
M
+ W) (W0 — HW ) (76)
we obtain

Zp}zw«é\PMhlPM — H\PM> + C.C.) =0 s (77)

where we have used Eq. (67) and c.c. denotes the
complex conjugate. This equation leads to

> P (0PuliVy — H¥y) =0 (78)
M

since for each variation 0W¥), its complex conjugate is
also a possible variation. We thus see that the DFMVP
leads to a variational principle for the eigensystem for
type 2 density operators. If, on the other hand, we start
from this variational principle a straightforward calcu-
lation shows that proposition 4 is then also valid.

Hence, the above argumentation can also be performed
in the opposite direction for type 2 density operators,
i.e. starting from Eq. (78) one is led to the DFMVP
Eq. (57).

Theorem 4: For type 2 density operators the DFMVP
Eq. (57) is equivalent to

> P (0Wui¥y — H¥y) =0 and (79)
M

> pilli¥y — H®y|* = min . (80)
M

Proof: Equation (79) is treated in the previous dis-

cussion. Adopting the vector notation W=
(Y1, VY2, 3V, .. .)T Eq. (79) can be rewritten as
(OW|i¥ —HY) =0 . (81)

This is the DFMVP for ¥ € #™ where M is the number
of wavefunctions ®,. Because of theorem 1, Eq. (81) is
equivalent to

|i¥ — H¥|]* = min (82)

and one arrives at Eq. (80).

Since Eqgs. (79) and (80) can be interpreted as gener-
alised versions of the DFM VP for wavefunctions Eq. (2),
one finds

Corollary 3: The DFMVP Eq. (57) applied to type 2
density operators, p, is equivalent to the DFMVP for
wavefunctions Eq. (2) if p is pure.

Corollary 4: For type 2 density operators the DFMVP
Eq. (57) conserves Tr{p*H}.

Proof: Using Eq. (64) and the nomenclature introduced
in the proof of theorem 4 yields

Te{p’H} =) py(YulH¥u) = (¥H|Y) . (83)

As proved in Ref. [10] the variational principle [Eqgs.
(81), (82)] conserves (¥|H|¥).

Corollary 4 shows that in general the mean energy
(H) is conserved if p is pure, but that for mixtures the
DFMVP may lead to unphysical results. The reason for
this is that the DFMVP uses the Hilbert—Schmidt scalar
product, which lets the statistical weights enter quad-
ratically. This sheds light on the problems reported by
McLachlan [6] and Heller [4]. We will discuss this point
further in Sect. 5.2, where we present an alternative
approach which conserves (H).

5.2 Alternative approach for type 2 density operators

In Sect. 5.1 we showed that the DFMVP Eq. (57) applied
to type 2 density operators may lead to a violation of the
conservation of the mean energy, (H). As mentioned
there, the main reason for this behaviour is the
formulation of the DFMVP employing the Hilbert—



Schmidt scalar product. Inspired by theorem 4 we now
present an alternative approach to generalising the
DFMYVP for wavefunctions Eq. (2) where the statistical
weights, pys, enter linearly, leading to a conservation of
(H).
In the following we assume the type 2 representation
of p [c.f. Eq. (64)] with corresponding constraints. Es-
pecially, we assume that py, > 0 for all M. Using the
nomenclature of Sect. 5.1 we introduce the generalised
wavefunction vector ¥ = (\/;TlTl,\/;Tz‘{’z,...)T. If we
apply the usual DFMVP for wavefunctions Eq. (2) to ¥
we obtain

(OW|i¥ —HY) =0 , (84)
which is equivalent to
|i¥ — H¥|* = min . (85)
This leads to
Proposition 5: The variational principle
> pu(0u|i¥y — H¥ ) =0 (86)
M
is equivalent to

(87)

> pulli¥y — H¥y|* = min
M

If p is pure this is equivalent to the usual DFMVP for
wavefunctions [Eq. (2)].

Proposition 6: The variational principle [Egs. (86), (87)]
conserves (H) = Tr{pH}.

Proof: The proof is similar to the one of corollary 4.
Since

Tr{pH} = 3 pur(FylH¥ys) = (PIHW) (88)
M

one can conclude from the theorem in Ref. [10] that

(WY|H|¥) is conserved.

The above considerations have made use of the
eigensystem which has to be determined before the
variational principle can be applied. This is prohibitive
for practical applications but in the following we derive
more convenient and useful equations, avoiding the
explicit use of the eigensystem.

The variations of the wavefunctions W;, are given by

My =Y Asald®s) + > 04y 1|Dyr) (89)
J J
and
lPM = ZAJM|(DJ> + ZAJM|(DM> .
J J

We consider now variations of the coefficients 4;, and
assume 0®; = 0 for all J. Inserting in Eq. (86) and taking
into account the constraints [Eqs. (43), (44)] leads to

i ZpM(SA;MA'LM
J.M

= ZpMéAjMALM<(DJ|H|(DL> .
J.M.L

(90)

o1
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Since the variations 04, ), are arbitrary and py # 0 we
obtain Ay, = —iHA,, for all M.! Using

BJ7L = ZAJA’MPMAZM (92)
M

yields B = —i[H, B], i.e. the equations of motion for the
coefficients are identical to those obtained from the
DFMVP [Eq. (57)]. We should remark at this point that
corollaries 1 and 2 of proposition 4 are also valid for this
approach. We now consider variations of the wavefunc-
tions ®; and assume 94, ,, = 0 for all J,M. Equation
(86) then reads

Z PrA; 2 (0D |idp Dy + idp @y — ALy HOL) =0
JL

(93)
For the following we will make use of

Hp|®;) = " Bij|H®L) = > pudLmd)[HOL)  (94)
T M

and

pH|®;) = ZBL,K|(DL><(DK|H|CDJ>
LK

= > puArnAi | O) (P |H|Py)
LEM

LM K

M
Furthermore,
Pl =" pu (AL.,MAiM|‘DL> + Ap A | Pr)
J ML
o+ Apaid; g, |01)) (%)

is used. These three relations together with Eq. (93) yield

Proposition 7: For type 2 density operators the varia-
tional principle [Egs. (86), (87)] is equivalent to

> (60y|ip — [H, pl|®s) =0

B:

©7)

—i[H,B] . (98)
We now apply the variational principle [Egs. (86), (87)]
to the MCTDH expansion of p in SPFs [c.f. Eq.(21)]
introduced in Sect. 4. The variations of the wavefunc-
tions ®; are given by

60, = D 100" .
Ky ofx

(99)

IThe configurations with pyy =0 do not contribute and can
therefore be omitted
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where

O =) gl

Je =ty sJumtsJitls s Jf) - (100)
Inserting in Eq. (97) yields

> (o0} |Te{ip ~ [H,pl} o)) =0 (101)
Kof

where Tr{-}, denotes the partial trace over all but the
xth degree; however, again restricted to the space
spanned by {®,}. We assume arbitrary variations 5@0}"
and since

(@s]ip — [H, p]|®1) =0 VJ,L, (102)
we obtain
Tr{ip — [H,p} ol =0 Vjx . (103)

The partial traces in these equations lead to mean fields
where p enters linearly. They are part of the linear mean-
field approach proposed by us in Ref. [25]. The
derivation of the equations of motion for the SPFs is
given in Ref. [25] and the final result is

BJ,L = (D,[Z(p)|Dr)
—1 )
o) = (1 _ p<z<>)Tr{ g(p)}x(@(l)w) o .

This set of equations of motion is rather similar to the
one derived from the DFMVP [c.f. Egs. (51), (52)]. The
equations of motion for the coefficients are identical and
only those for the SPFs differ. The main differences are
the mean fields, where p now enters linearly. The
matrices 2 are given by

1),
a@](j)'(’() = <(p5K)|Tr{p};c|q)](K)> .

Finally, we should remark that this approach may be
applied only if the statistical weights, pys, are nonnega-
tive, which is not always fulfilled in practical applica-
tions. For example, if one wants to calculate a linear
absorption spectrum it is sufficient to propagate a first-
order perturbative term, Ap, which is due to the inter-
action with an electromagnetic field [38]. Ap is not
positive and has in fact a vanishing trace. Of course the
actual state of the system is described by a positive
density operator p, + Ap, where p, denotes the equilib-
rium state of the system before excitation; however, if Ap
is chosen as the initial condition the linear mean-field
approach cannot sensibly be applied.

Furthermore, our approach can easily be generalised
by choosing the wavefunction as ¥ = (pf'¥1, p5¥>, .. .)T,
o> 0, and applying the DFMVP for wavefunctions
Eq. (2), analogously to the above line of argument. For
o =1 this leads to the variational principle [Eqs. (79),
(80)], and for a = 1/2 to the variational principle [Egs.
(86), (87)]. One can conclude that Tr{p?**H} is conserved
by this approach and that the usual variational principle
for wavefunctions is obtained if the state is pure. How-
ever, we consider the cases o = 1/2 and o = 1 to be the
most relevant ones.

(104)
(105)

(106)

6 Open systems

Large quantum systems are often divided into a small
subsystem and an environment. From a physical point
of view this is sensible if the subsystem interacts only
weakly with the environment and if one is interested
only in the dynamics of the former. In principle the
subsystems dynamics is contained in the dynamics of
the large system. If p is the density operator of the
whole system the state of the subsystem, p,, is given by
taking the partial trace of p over the degrees of freedom
of the environment, p, = Tr.{p}. The time evolution of
p is given by the Liouville-von Neumann equation,
which means that the whole system is closed. From the
Liouville-von Neumann equation one can derive an
equation of motion for p,, known as a generalised
master equation [39—41]. This equation simplifies to a
so-called Markovian master equation if the time scales
of the subsystem and the environment are well sepa-
rated, if the correlation time of the latter is negligible
and if the environment couples only weakly or is at
rather high temperature [26, 28, 41-43]. The time
evolution of the subsystem is then influenced by
dissipative effects leading to the irreversible dynamics
of an open system.

From a formal point of view the irreversible dy-
namics of an open system should be given by a dy-
namical semigroup [29]. If one introduces an additional
artificial witness system which does not interact with
the system, however, this semigroup should not only be
positive but also completely positive [29]. This means
the following. If p, is the density operator of the open
system and p,, is that of the witness system p, ® p,,
should be positive for any given dimensionality of the
witness system. The requirement of complete positivity
formally leads to the equation of motion Eq. (11)
mentioned in Sect. 3

. . 1 1
pe = —ilH, p)] + Z(Vmsz —5 V'V, - EpstV,) :
J

(107)

where the operators V}, which are not further specified at
this point, induce dissipation [29-31]. This equation is
very similar to those derived in the Markovian limit, but
not all of the latter share its special structure. The
different equations of motion for open systems are still
being discussed in the literature and from our point of
view the question which of these is most appropriate is
still open. We will discuss later only the form Eq. (107)
but we emphasise that other forms of the dissipative
operator may be used within our formalism as well.

Concerning the DFMVP, the investigation of open
systems is, in general, more difficult than the investi-
gation of closed ones since each of the various equa-
tions of motion has a more complicated structure than
the Liouville-von Neumann equation [Egs. (9), (10)].
The only result we obtained concerns the type of
Eq. (107).

Proposition 8: For type 2 density operators Eq. (107)
leads to Tr{p} <O0.



Proof: Defining the projector

P=2 " |®) (D (108)

we obtain

Tr{p} = Tr{B} = ) (®,|2(p)|®,) = Tr{PL(p)}
= E,: Tr{PVij,T - %PV; Vip

Loyt
—EPPV,‘ Vi
=S me{wirvip} (¥ vip}
J
=S {1 -Prpr/a-p)}

J

: (109)

since Pp = pP = p by construction. The first of the
equations follows because of the constraints [Egs. (43),
(44)].

Note that the possible decrease in Tr{p} is due to
representing p within the finite incomplete basis set
{®,}. The decrease in Tr{p} was observed previously in
a numerical application [21].

<0

7 Summary and conclusion

We introduced MCTDH-like expansions of density
operators which may be used in numerical treatments
of the dynamics of closed and open quantum systems
[25]. We investigated their equations of motion which
are based on the DFMVP. Starting first with an
arbitrary parameterised form of the density operator,
p, we investigated the application of the DFMVP in
Sect. 3. We derived there a rather general criterion under
which conditions the equations of motion conserve the
hermiticity of p. It shows that an inappropriate param-
eterisation of p may lead to unphysical results.

We then introduced in Sect. 4 two MCTDH-like types
of parameterised density operators, referred to as type 1
and 2. The latter type has recently been investigated by us
numerically [25]. The first type is an expansion in terms of
products of one-dimensional density operators. The
second type is an expansion in terms of ket-bra products
of wavefunctions which may be parameterised in an ar-
bitrary way. However, special attention was given to the
form of the Hartree products of one-dimensional wave-
functions as it is used in the MCTDH algorithm for
wavefunctions [7-12]. For both types we showed that the
hermiticity of p is conserved by the equations of motion.
Further details can be found in Ref. [25], where we also
discuss the numerical performance.

In Sect. 5 we investigated the implications of the
DFMYVP for closed systems and, in particular, obtained
a number of interesting results for type 2 density oper-
ators. One of the main results for closed systems is that a
pure state remains pure and that Tr{p} is conserved by
the approximate propagation scheme. Both properties
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are not automatically fulfilled for other types of pa-
rameterised density operators, for example, type 1. We
showed further that (for closed systems) the DFMVP
applied to type 2 density operators is equivalent to a
generalised version of the DFMVP for wavefunctions.
Motivated by this result we introduced a modified ver-
sion of this generalisation from which alternative equa-
tions of motion for type 2 density operators can be
derived. For this second approach a pure state also re-
mains pure and Tr{p} is also conserved. The difference
between both approaches is that while the former con-
serves Tr{p?>H} the latter conserves Tr{pH}. The main
reason for this difference is that the DFMVP for density
operators makes use of the Hilbert—Schmidt scalar
product and p enters quadratically. This sheds some
light on the problems reported by McLachlan [6] and
Heller [4] in applying the variational principle to a
similar type of density operators. However, the second
approach cannot be used in all practical applications,
and a recent numerical study [25] has shown that the
convergence properties of the linear mean-field approach
are not as good as for the first one.

Finally, we discussed open systems, which, in general,
are more difficult to study formally than closed ones.
The only result we obtained concerns a Lindblad dissi-
pative operator type leading to a completely positive
semigroup evolution of the open system. We showed
that for type 2 density operators Tr{p} may decrease due
to the representation of p within a finite incomplete basis
set. This effect was recently observed in a numerical
application [21].

We close this article by making a remark on practical
applications. The DFMVP usually yields an approxi-
mation p which converges to the exact solution if the
parameterisation is improved. Any constant of motion
which fails to be conserved, such as the mean energy for
closed systems, can be used to measure the accuracy of
the approximation. In following this strategy one thus
obtains an internal error control.
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Appendix: generalised constraints
for type 1 and 2 density operators

For type 1 density operators the constraints are given by

< aga O.SK)> = O
(';5,’<>> —0.

Each SPDO JL") is an element of the Hilbert space of
Hilbert—Schmidt operators, Vg‘), corresponding to the
wavefunction Hilbert space, #,, introduced in Sect. 4.
As mentioned in Sect. 5 operators acting on &5 can be
classified in the same manner as operators acting on .
For example, an operator 4" = [¢), ] is self-adjoint

(A1)

(A2)
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with respect to the Hilbert-Schmidt scalar product if g
is a self-adjoint (linear) operator acting on .. With the
help of such operators one can formulate the generalised
constraint

(o]5) = (o

The actual choice of the operators ¥ is relevant in
practical applications and may simplify the numerical
treatment but does not affect the accuracy of the
representation of the density operator. Defining

g(K)O-(K)> .

V

(A3)

) = 1) 1 g 600 (A4)
S/
p=p+ivp, G=> 4", (AS)
k=1
one can use
Te{op'(p— Z(p))} = Te{op'(p — Z(p))} =0,
P =%+i% , (A6)

to derive equations of motion for the 65"7 in the same

manner as for the ¢\ if ) = 0 for all K, since
(o319} =0

The explicit derivation is given in Ref. [25], and the final
result is

(A7)

Br = (Qs|(ZL +i%)p) (A8)
6 — g o)
-1
+(1=29)(29) (2 +i9) Ve . (A9)

All quantities occurring in this set of equations are
correspondingly defined as in Sect. 4.

For type 2 density operators the constraints are given
by

(D)D) =01 (A10)
(@|d) =0 . (All)

In the same manner as previously one can formulate the
generalised constraint

(@|0p) = —i(Dy|GlOL) (A12)
where G is a self-adjoint but otherwise arbitrary
operator acting on . Defining
O, = &, +iGD,

Yp =1[G,p] ,

one can use again Eq. (A6) to derive equations of
motion for the ®;, taking into account that

(D;|D)) =0 VJ,L . (A15)

Now we especially consider the MCTDH expansion of p
in SPFs [cf. Eq. (21)] introduced in Sect. 4. The
constraint operator is given by G =g 4+ ¢® + ...+
g(f>, where g(K>, 1 <k <f, is a self-adjoint constraint
operator acting exclusively on the xth degree of freedom.

(A13)

p=p+i%p, (Al14)

As previously the actual choice of the constraint
operators is relevant in practical applications and may
simplify the numerical treatment but does not affect the
accuracy of the representation of the density operator.
Applying the DFMVP for density operators (Eq. 13) the
resulting equations of motion read

By = (Q/|(Z +i%)(p)|®s) (A16)
o) = g™ + (1= P Te{( +i9)(0)p},
-1
v <@<z),<x>> o . (A17)

If the linear mean-field approach introduced in Sect. 5.2
is used one obtains instead of Eq. (A17)

9 = —ig®g + (1= PY) Tr{( +i%)(p)},
“ (90),(»«))’1(,,(@ .

The explicit derivation of the equations of motion and a
more detailed discussion are given in [25]. Furthermore,
all quantities occurring in this set of equations are
correspondingly defined as in Sect. 4.

Finally we want to remark that all results for type 1
and 2 density operators remain valid for these genera-
lised constraints and that the proofs require only minor
modifications.

(A18)
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